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Content Outline

Linear Regression

• Line of best fit and linear model

• Formulas for parameters

Estimation

• Using data to estimate parameters of interest

• Formulas for parameter estimates

Asymptotic Distribution

• Approximate distribution of parameter estimates for “large n”

• Estimating variance of parameter estimates

Hypothesis Testing and Confidence Intervals

• Using asymptotic distribution to test statements about underlying parameters

• Using asymptotic distribution to give a range of plausible underlying
parameter values
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Linear Regression as Line of Best Fit

Suppose we have two variables, Y and X. We are interested in using data to
learning about the relationship between Y and X.

Examples:

• How are education and wages related?

• How are unemployment and inflation related?

• What is the relationship between receiving a treatment and a health outcome?
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Linear Regression as Line of Best Fit

One way to model the relationship between Y and X would be to try to find the
line of best fit between the two variables.

By the line of best fit we mean finding the line, characterized by a slope and an
intercept, that minimizes the distance between Y and β̃0 + β̃1 ·X.

Formally, we are interested in the parameters β0 and β1 that solve

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − (β̃0 + β̃1 ·X)

)2]
= arg min

β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
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Formally, we are interested in the parameters β0 and β1 that solve

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − (β̃0 + β̃1 ·X)

)2]
= arg min

β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]

• By arg min we just mean we are interested in the arguments β0 and β1 that
minimize

E[(Y − β̃0 − β̃1 ·X)2]

rather than the value E[(Y − β0 − β1 ·X)2] itself.
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• Another way of saying this is that

E[(Y − β0 − β1 ·X)2] < E[(Y − β̃0 − β̃1 ·X)2]

for any (β̃0, β̃1) 6= (β0, β1).

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 6 / 95



Linear Regression as Line of Best Fit

We are interested in the parameters β0 and β1 that solve

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
Why do we care about these parameters?

• Knowing the line of best fit will help us predict Y using X

◦ Will provide the best linear prediction of Y using X.

◦ Even though a linear model may seem too simple, ends up being tremendously
useful in practice.
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Linear Regression as Line of Best Fit

We are interested in the parameters β0 and β1 that solve

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
Why do we care about these parameters?

• We can also interpret the parameters β0 and β1 to learn (to a first order
degree) about the relationship between Y and X

◦ Is there a positive or negative relationship between Y and X? ⇐⇒ Is β1
positive or negative?

◦ How much can we expect Y to change if we see an increase in X of one unit?
⇐⇒ What is β1?

◦ What is the average value of Y when X is zero? ⇐⇒ What is β0?

◦ To a first order degree because β0 and β1 describe the line of best fit rather
than the “true” relationship.

� No need to worry about this difference for now though.
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Linear Regression: The Parameters

We are interested in the parameters β0 and β1 that solve

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]

Let’s solve for β0 and β1 by taking first order conditions:

∂

∂β̃0
: E [Y − β0 − β1 ·X] = 0

∂

∂β̃1
: E
[
(Y − β0 − β1 ·X) ·X

]
= 0

We will return to these first order conditions shortly. For now, after rearranging we
get that

β1 =
E[Y X]− E[Y ]E[X]

E[X2]− E[X]E[X]
=

Cov(Y,X)

Var(X)

β0 = E[Y ]− β1E[X]

Exercise: Show this rearrangement.
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Linear Regression: The Error Term

Let’s define the random variable

ε = Y − (β0 + β1 ·X)

= Y − β0 − β1 ·X

We can then write
Y = β0 + β1 ·X + ε.

which is the linear regression equation you may have seen before. The random
variable ε will be important later on as we try to do inference.
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Linear Regression: The Error Term

Let’s define the random variable

ε = Y − (β0 + β1 ·X)

= Y − β0 − β1 ·X

We call ε the linear regression error variable.

Recall that from the first order conditions for β0 and β1 we have that

E
[
Y − β0 − β1 ·X︸ ︷︷ ︸

=ε

]
= 0

E
[

(Y − β0 − β1 ·X)︸ ︷︷ ︸
=ε

·X
]

= 0

These give us the properties that

E[ε] = 0 and E[εX] = 0.
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Linear Regression: Model Summary

In total our line of best fit parameters

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
generate a model betwen Y and X that can be written as

Y = β0 + β1 ·X + ε (1)

where
E[ε] = 0 and E[εX] = 0.

• It is often convenient to work directly with this representation or make
assumptions about ε.

• You may have seen this representation before, the prior slides go over where
this model comes from

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 11 / 95



Linear Regression: Model Summary

In total our line of best fit parameters

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
generate a model betwen Y and X that can be written as

Y = β0 + β1 ·X + ε (1)

where
E[ε] = 0 and E[εX] = 0.

• It is often convenient to work directly with this representation or make
assumptions about ε.

• You may have seen this representation before, the prior slides go over where
this model comes from

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 11 / 95



Linear Regression: Model Summary

Our line of best fit parameters

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
are useful for

• Making predictions about Y using X.

◦ Predict Y when X = x with β0 + β1 · x

• Learning about the relationship between Y and X.

◦ Interpret the signs and magnitudes of β0 and β1
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Linear Regression: Questions

Questions?
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Linear Regression: Estimation Introduction

As we went over in the last section we are interested in the line of best fit
parameters

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
Problem: We do not know know the joint distribution of (Y,X), so we cannot to
solve for β0 and β1 by evaluating the expectation above.

Solution: Use data to estimate the parameters β0 and β1.
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Linear Regression: The Estimator

Solution: Use data to try and estimate the parameters β0 and β1.

How do we do this?

Intuition:

• Suppose we have access to n randomly collected samples {Yi, Xi}ni=1

• We are interested in the line of best fit between Y and X in the population

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 16 / 95



Linear Regression: The Estimator

Solution: Use data to try and estimate the parameters β0 and β1.

How do we do this?

Intuition:

• Suppose we have access to n randomly collected samples {Yi, Xi}ni=1

• We are interested in the line of best fit between Y and X in the population

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 16 / 95



Linear Regression: The Estimator

Solution: Use data to try and estimate the parameters β0 and β1.

How do we do this?

Intuition:

• Suppose we have access to n randomly collected samples {Yi, Xi}ni=1

• We are interested in the line of best fit between Y and X in the population

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 16 / 95



Linear Regression: The Estimator

Solution: Use data to try and estimate the parameters β0 and β1.

How do we do this?

Intuition:

• Suppose we have access to n randomly collected samples {Yi, Xi}ni=1

• We are interested in the line of best fit between Y and X in the population

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]

• We estimate the line of best fit between Y and X in the population using the
line of best fit between Yi and Xi in our sample:

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1 ·Xi)2

◦ Same idea as using X̄ to estimate E[X], etc.
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Linear Regression: The Estimator

Let’s see how this looks like in practice. Suppose we are interested in the
relationship between X, a car’s weight, and Y a car’s miles per gallon (mpg).

We collect some data {Yi, Xi}ni=1 where each (Yi, Xi) pair represents the miles
per gallon and weight of a particular vehicle in our dataset. We can represent our
data using a scatterplot
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Linear Regression: The Estimator

Now to estimate β̂0, β̂1 we simply find the line of best fit between the Yi and Xi ’s
in our data.
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Linear Regression: The Estimator

Now to estimate β̂0, β̂1 we simply find the line of best fit between the Yi and Xi ’s
in our data.

The blue line represents the line of best fit whereas the green line represents a
straight line through Ȳ . We can see that the blue line is much closer to the data
than the green line.
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Linear Regression: The Estimator

In this case we have that β̂0 = 37.2851 and β̂1 = −5.3445.

How do we interpret these estimates?

• β̂0 = 37.2851: We estimate that the average value of Y when X = 0 is
37.2851

◦ In context: we estimate that the average mpg for a car that weights 0 tons is
37.2851 miles per gallon

• β̂1 = −5.3445: We estimate that, on average, a one unit increase in X is
associated with a 5.3445 unit decrease in Y .

◦ In context: we estimate that, on average, a one ton increase in car weight is
associated with a 5.3445 unit decrease in miles per gallon.
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Linear Regression: The Estimator

In this case we have that β̂0 = 37.2851 and β̂1 = −5.3445.

How can we use these estimates for prediction?

• Suppose we have a car that weighs 3.5 tons. Based on our estimates, what
would we predict its miles per gallon to be?

◦ Our estimated regression line is

Predicted MPG = 37.2851− 5.3445 ·Weight in Tons.

◦ Using this line and plugging in we get that

Predicted MPG = 37.2851− 5.3445 · 3.5 = 18.5793.

◦ We denote this predicted MPG as ˆMPG and in general will denote our

predictions as Ŷ so that our estimated regression line can be written

Ŷ = β̂0 + β̂1 ·X.
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◦ Our estimated regression line is

Predicted MPG = 37.2851− 5.3445 ·Weight in Tons.

◦ Using this line and plugging in we get that

Predicted MPG = 37.2851− 5.3445 · 3.5 = 18.5793.

◦ We denote this predicted MPG as ˆMPG and in general will denote our

predictions as Ŷ so that our estimated regression line can be written

Ŷ = β̂0 + β̂1 ·X.
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Linear Regression: The Estimator

Notice a couple things in the above interpretations

• The intercept is often uninterpretable (What car would weigh 0 tons?). For
this reason we often focus our analysis on the slope coefficient.

• The interpretation is deliberately not causal. We use “associated with a
decrease. . . ” as opposed to “leads to a decrease. . . ”
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Linear Regression: Formulas

Now that we’ve gotten some intuition for what linear regression is doing and how
to use our sample to estimate the parameters of interest, let’s derive explicit
formulas for β̂0 and β̂1.

Recall that

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1 ·Xi)2 .

Taking first order conditions gives us that

∂

∂b0
:

1

n

n∑
i=1

(Yi − β̂0 − β̂1 ·Xi) = 0

∂

∂b1
:

1

n

n∑
i=1

(Yi − β̂0 − β̂1 ·Xi) ·Xi = 0
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Linear Regression: Formulas

Rearranging the first equality gives us

1

n

n∑
i=1

Yi −
1

n

n∑
i=1

β̂0 −
1

n

n∑
i=1

β̂1 ·Xi = 0

Ȳ − β̂0 − β̂1
1

n

n∑
i=1

Xi = 0

Ȳ − β̂0 − β̂1X̄ = 0

β̂0 = Ȳ − β̂1X̄

So that what remains is to solve for β̂1.
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Linear Regression: Formulas

Rearranging the second equality gives us

1

n

n∑
i=1

YiXi − β̂0
1

n

n∑
i=1

Xi − β̂1
1

n

n∑
i=1

X2
i = 0

Using the prior result that β̂0 = Ȳ − β̂1X̄ gives:

1

n

n∑
i=1

YiXi − (Ȳ − β̂1X̄)X̄ − β̂1
1

n

n∑
i=1

X2
i = 0 1

n

n∑
i=1

YiXi − Ȳ X̄

+ β̂1

(X̄)2 − 1

n

n∑
i=1

X2
i

 = 0

So, finally

β̂1 =
1
n

∑n
i=1 YiXi − Ȳ X̄

1
n

∑n
i=1X

2
i − (X̄)2

.
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YiXi − (Ȳ − β̂1X̄)X̄ − β̂1
1

n

n∑
i=1

X2
i = 0 1

n

n∑
i=1

YiXi − Ȳ X̄
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Linear Regression: Formulas

Let’s make use of the following equalities to represent β̂1

1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄) =
1

n

n∑
i=1

YiXi − Ȳ X̄

1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

X2
i − (X̄)2

Then:

β̂1 =

Sample Covariance between Y and X︷ ︸︸ ︷
1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄)

1

n

n∑
i=1

(Xi − X̄)2︸ ︷︷ ︸
Sample Variance of X

This ties in nicely as, if we recall from earlier, we found that

β1 =
Cov(Y,X)

Var(X)
=

E[(Y − µY )(X − µX)]

E[(X − µX)2]
.
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Linear Regression: Randomness

We have now gone over how use data to obtain estimates β̂0, β̂1 of our parameters
of interest β0, β1.

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1 ·Xi)2

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
Notice that, while the parameters of interest β0 and β1 are fixed quantities, the
estimators β̂0 and β̂1 are functions of the data; they depend on the specific sample
of data collected.

Some Questions to Consider:

1. What would happen to our estimates β̂0 and β̂1 if we were to collect a
different sample of data?

2. How can we model the distribution of our estimates β̂0 and β̂1?

3. What happens to this distribution as n→∞?
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Linear Regression: Randomness

Question: What would happen to our estimates β̂0 and β̂1 if we were to collect a
different sample of data?

Let’s return to the cars data and see how our regression lines look when we
consider two different (random) samples.

• Sample 1: β̂0 = 37.1285 and β̂1 = −5.2341.

• Sample 2: β̂0 = 42.352 and β̂1 = −7.307.

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 27 / 95



Linear Regression: Randomness

Question: What would happen to our estimates β̂0 and β̂1 if we were to collect a
different sample of data?

Let’s return to the cars data and see how our regression lines look when we
consider two different (random) samples.

• Sample 1: β̂0 = 37.1285 and β̂1 = −5.2341.

• Sample 2: β̂0 = 42.352 and β̂1 = −7.307.

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 27 / 95



Linear Regression: Randomness

Question: What would happen to our estimates β̂0 and β̂1 if we were to collect a
different sample of data?

Let’s return to the cars data and see how our regression lines look when we
consider two different (random) samples.

• Sample 1: β̂0 = 37.1285 and β̂1 = −5.2341.

• Sample 2: β̂0 = 42.352 and β̂1 = −7.307.

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 27 / 95



Linear Regression: Randomness

Key Concept: Because the estimators β̂0 and β̂1 are functions of the random
sample {Yi, Xi}ni=1 they are themselves random variables.

β̂0 = Ȳ − β̂1X̄

β̂1 =
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2

Problem: How do we connect β̂0 and β̂1 to the population parameters β0 and β1?

Fundamental Question: Given estimates β̂0 and β̂1 what can we say about the
underlying parameters of interest β0 and β1?
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Linear Regression: Motivating Idea

Suppose we are interested in the association between years of education and
income. We collect a random sample of size n = 100, {Yi, Xi}100i=1 and run a
simple linear regression of Y = INC against X = EDU .

That is, we are interested in the parameters β0 and β1 that dictate the line of best
fit between income and education in the population

β0, β1 = arg min
β̃0,β̃1

E
[
(INC − β̃0 − β̃1 · EDU)2

]
.

or equivalently the parameters from the linear model

INC = β0 + β1 · EDU + ε.

where E[ε · EDU ] = 0.
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Linear Regression: Motivating Idea

Using our data {Yi, Xi}ni=1 we find that β̂1 = 0.5.

β̂0β̂1 = arg min
b0,b1

1

n

n∑
i=1

{Yi − b0 − b1 ·Xi}2 .

Our friend, Prince Harry Estranged of England, however claims that there is no
association between education and income, that is that β1 = 0.
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Linear Regression: Motivating Idea

Question: How can we tell if he is right?

Answer: One way would be to find the probability that we would obtain β̂1 = 0.5
(or something more extreme) if the true value of β1 was 0.

Pr(|β̂1| ≥ 0.5|β1 = 0).

If this probability is sufficently low, we can reject Former Prince Harry’s claim.
Otherwise he may be right.

To calculate this probability we will need to know something about the
(approximate) distribution of β̂1 and how that is related to the true parameter β1.

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 32 / 95



Linear Regression: Motivating Idea

Question: How can we tell if he is right?

Answer: One way would be to find the probability that we would obtain β̂1 = 0.5
(or something more extreme) if the true value of β1 was 0.

Pr(|β̂1| ≥ 0.5|β1 = 0).

If this probability is sufficently low, we can reject Former Prince Harry’s claim.
Otherwise he may be right.

To calculate this probability we will need to know something about the
(approximate) distribution of β̂1 and how that is related to the true parameter β1.

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 32 / 95



Linear Regression: Motivating Idea

Question: How can we tell if he is right?

Answer: One way would be to find the probability that we would obtain β̂1 = 0.5
(or something more extreme) if the true value of β1 was 0.

Pr(|β̂1| ≥ 0.5|β1 = 0).

If this probability is sufficently low, we can reject Former Prince Harry’s claim.
Otherwise he may be right.

To calculate this probability we will need to know something about the
(approximate) distribution of β̂1 and how that is related to the true parameter β1.

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 32 / 95



Linear Regression: Assumptions

In order to connect the estimates β̂0 and β̂1 to the population parameters, we will
need to make some (light) assumptions about the underlying distribution of (Y,X)
from which our sample {Yi, Xi}ni=1 is drawn.

It will be helpful to recall the following definitions here

β0, β1 = arg min
β̃0,β̃1

E
[
(Y − β̃0 − β̃1)2

]
ε = Y − β0 − β1 ·X

And see that ε is itself a random variable.
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Linear Regression: Assumptions

Make the following assumptions

1. Random Sampling: Assume that {Yi, Xi} are independently and identically

distributed; (Yi, Xi)
i.i.d∼ (Y,X)

◦ Essentially this means that our random sample is “representative of the
population”

◦ Would be violated if say, we only sampled cars made in Los Angeles and we
were trying to make inferences about all cars produced in the US

2. Homoskedasticity: Assume that E[ε2|X = x] = σ2
ε for all possible values of x.

◦ An important implication of this is that

Var(ε(X − µX)) = Var(ε) Var(X) = σ2
εσ

2
X .

3. Rank Condition: There must be at least two distinct values of X that appear
in the population.

And that’s it!
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distributed; (Yi, Xi)
i.i.d∼ (Y,X)

2. Homoskedasticity: Assume that E[ε2|X = x] = σ2
ε for all possible values of x.

◦ Since, ε is mean zero, this means that Y is equally spread around the regression
line for all values of X.

◦ This is a fairly strong assumption to make and we will relax it later on, but it is
helpful for now to provide insight.

◦ An important implication of this is that

Var(ε(X − µX)) = Var(ε) Var(X) = σ2
εσ

2
X .

Questions?

3. Rank Condition: There must be at least two distinct values of X that appear
in the population.

And that’s it!
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2. Homoskedasticity: Assume that E[ε2|X = x] = σ2
ε for all possible values of x.

◦ An important implication of this is that

Var(ε(X − µX)) = Var(ε) Var(X) = σ2
εσ

2
X .

3. Rank Condition: There must be at least two distinct values of X that appear
in the population.

◦ Need at least two distinct points to make a line.

◦ If there is only one distinct point then our minimization problem is undefined.

And that’s it!
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Linear Regression: Assumptions

Make the following assumptions

1. Random Sampling: Assume that {Yi, Xi} are independently and identically

distributed; (Yi, Xi)
i.i.d∼ (Y,X)

2. Homoskedasticity: Assume that E[ε2|X = x] = σ2
ε for all possible values of x.

◦ An important implication of this is that

Var(ε(X − µX)) = Var(ε) Var(X) = σ2
εσ

2
X .

3. Rank Condition: There must be at least two distinct values of X that appear
in the population.

And that’s it!
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Linear Regression: Asymptotic Distribution

Given these assumptions (Random Sampling, Homoskedasticity, Rank Condition)
let’s try and figure out what the approximate distribution is of β̂1.

Recall that

β̂1 =
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2

By definition of ε = Y − β0 − β1 ·X:

Y = β0 + β1 ·X + ε;

and that by the first order conditions of β0 and β1:

E[ε] = 0

E[ε ·X] = 0
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Linear Regression: Asymptotic Distribution

We will also make use of the following results from our probability review. If Z is a
random variables and we have i.i.d observations Z1, Z2, .., Zn:

The Law of Large Numbers states that as n→∞:

Z̄ → E[Z]

or, equivalently, Z̄ ≈ E[Z] for n large.

The Central Limit Theorem states that as n→∞, approximately,

√
n
(
Z̄ − E[Z]

)
∼ N

(
0,Var(Z)

)
or, equivalently, Z̄ ∼ N

(
E[Z],Var(Z)/n

)
.
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Linear Regression: Asymptotic Distribution

Starting with:
√
nβ̂1 =

√
n 1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)

1
n

∑n
i=1(Xi − X̄)2

.

Expand Yi = β0 + β1Xi + εi and Ȳ = β0 + β1X̄ + ε̄, where ε̄ = 1
n

∑n
i=1 εi:

√
nβ̂1 =

1√
n

∑n
i=1

(
β1(Xi − X̄) + (εi − ε̄)

)
(Xi − X̄)

1
n

∑n
i=1(Xi − X̄)2

.
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i=1(Yi − Ȳ )(Xi − X̄)

1
n

∑n
i=1(Xi − X̄)2

.

Expand Yi = β0 + β1Xi + εi and Ȳ = β0 + β1X̄ + ε̄, where ε̄ = 1
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√
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√
nβ1

1
n
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n
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1√
n
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Linear Regression: Asymptotic Distribution

So we have that:

√
n
(
β̂1 − β1

)
=

1√
n

∑n
i=1(εi − ε̄)(Xi − X̄)

1
n

∑n
i=1(Xi − X̄)2

.

Using Law of Large Numbers replace ε̄ ≈ E[ε] = 0, X̄ ≈ µX , and
1
n

∑n
i=1(Xi − X̄)2 ≈ σ2

X :

√
n
(
β̂1 − β1

)
≈

1√
n

∑n
i=1 εi(Xi − µX)

σ2
X

.
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Linear Regression: Asymptotic Distribution

Finally, note that by Central Limit Theorem, since

E[ε(Xi − µX)] = E[εXi]− E[ε]µX = 0.

we have that (approximately for large n):

1√
n

n∑
i=1

εi(Xi − µX) ∼ N
(

0,Var
(
ε(X − µX)

))
.

Now note that by Homoskedaticity:

Var(ε(X − µX)) = σ2
εσ

2
X

so that (approximately for large n):

1√
n

n∑
i=1

εi(Xi − µX) ∼ N
(

0, σ2
εσ

2
X

)
.
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Linear Regression: Asymptotic Distribution

Putting this all together, we have that, approximately for n large;

√
n
(
β̂1 − β1

)
∼ N(0, σ2

εσ
2
X)

σ2
X

= N
(
0, σ2

ε/σ
2
X︸ ︷︷ ︸

:=σ2
β1

)
.

where in the last equality we use the fact that N(0, a)/b ∼ N(0, a/b2).

Other
ways of putting this are, approximately for n large:

β̂1 ∼ N
(
β1, σ

2
β1/n

)
β̂1 − β1
σβ1/

√
n
∼ N(0, 1)

where as a reminder σβ1 = σε/σX . This last form is what we will use the most.
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Linear Regression: Asymptotic Distribution

Following similar steps we can derive the approximate distribution of β̂0 as well as
the covariance between β̂0 and β̂1:

√
n
(
β̂1 − β̂1

)
∼ N

(
0,
σ2
ε

σ2
X

)
√
n
(
β̂0 − β0

)
∼ N

(
0, σ2

ε
E[X2]

σ2
X

)

Cov(β̂1, β̂0) = −σ2
ε
E[X]

n · σ2
X
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Linear Regression: Asymptotic Distribution

Following similar steps we can derive the approximate distribution of β̂0 as well as
the covariance between β̂0 and β̂1:

√
n
(
β̂1 − β̂1

)
∼ N

(
0,
σ2
ε

σ2
X

)
√
n
(
β̂0 − β0

)
∼ N

(
0, σ2

ε
E[X2]

σ2
X

)

Cov(β̂1, β̂0) = −σ2
ε
E[X]

n · σ2
X

Important to remember these! The above is just providing intuition on how we get
these results.
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Linear Regression: Asymptotic Variances

For large n we have that

Var(β̂1) =
σ2
ε

n · σ2
X

, Var(β̂0) = σ2
ε
E[X2]

n · σ2
X

, and Cov(β̂1, β̂0) = −σ2
ε
E[X]

n · σ2
X

.

First notice that these variances are increasing with σ2
ε .
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Linear Regression: Asymptotic Variances

For large n we have that

Var(β̂1) =
σ2
ε

n · σ2
X

, Var(β̂0) = σ2
ε
E[X2]

n · σ2
X

, and Cov(β̂1, β̂0) = −σ2
ε
E[X]

n · σ2
X

.

First notice that these variances are increasing with σ2
ε .

Intuition: If points are more tightly distributed around the regression line it is
easier to tell what the regression line is.
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Linear Regression: Asymptotic Variances

For large n we have that

Var(β̂1) =
σ2
ε

n · σ2
X

, Var(β̂0) = σ2
ε
E[X2]

n · σ2
X

, and Cov(β̂1, β̂0) = −σ2
ε
E[X]

n · σ2
X

.

These variances tend to zero as n→∞; as we collect more data we are closer to
the true values β0 and β1.
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Linear Regression: Asymptotic Variances

For large n we have that

Var(β̂1) =
σ2
ε

n · σ2
X

, Var(β̂0) = σ2
ε
E[X2]

n · σ2
X

, and Cov(β̂1, β̂0) = −σ2
ε
E[X]

n · σ2
X

.

These variances decrase as σ2
X increases; as the spread of X increases we can

make out the line more clearly.
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Linear Regression: Questions

Questions?
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Linear Regression: Variance Estimation

Positive Result: Under homoskedasticity, for n large, we have (approximately)

β̂1 − β1
σβ1/

√
n
∼ N (0, 1) .

where

σ2
β1 =

σ2
ε

σ2
X

.

Problem: What is σ2
β1

? How can we estimate it?

• By LLN we know how to esimate Var(X)

1

n

n∑
i=1

(Xi − X̄)2 ≈ Var(X).

• But what about Var(ε) = σ2
ε ?
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Linear Regression: Variance Estimation

To estimate Var(ε) we first construct estimated residuals ε̂i via

ε̂i = Yi − β̂0 − β̂1 ·Xi.

Because β̂1 → β1 and β̂0 → β0 we can say that ε̂i ≈ εi = Yi − β0 − β1Xi (for n
large).

Also by the first order conditions for β̂0 we have that

− 1

n

n∑
i=1

(Yi − β̂0 − β̂1 ·Xi︸ ︷︷ ︸
=ε̂i

) = 0.

so that
1

n

n∑
i=1

ε̂i = ¯̂εi = 0.
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Linear Regression: Variance Estimation

Putting this together we can estimate Var(ε) = σ2
ε by calculating the sample

variance of ε̂i:

σ̂2
ε =

1

n

n∑
i=1

ε̂2i −���(¯̂εi)
2

By β̂1 → β1 and β̂0 → β0 as n→∞;

≈ 1

n

n∑
i=1

ε2i

By Law of Large Numbers;

≈ E[ε2]

By E[ε] = 0;

= Var(ε) = σ2
ε
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Linear Regression: Variance Estimation

Putting all of this together, we can estimate σ2
β1

=
σ2
X

σ2
X

via;

σ̂2
β1 =

σ̂2
ε

1
n

∑n
i=1(Xi − X̄)2

≈ σ2
β1 .

since for large n

σ̂2
ε =

1

n

n∑
i=1

ε̂2i ≈ σ2
ε

1

n

n∑
i=1

(Xi − X̄)2 ≈ σ2
X .
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Linear Regression: Variance Estimation

Now, since we have that (approximately, for large n):

β̂1 − β1
σβ1/

√
n
∼ N(0, 1).

And since, as we have established above, σ̂β1 ≈ σβ1 , for large n we can say that
(approximately)

β̂1 − β1
σ̂β1/

√
n
∼ N(0, 1).
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Linear Regression: Variance Estimation

The quantity σ̂β1/
√
n is often referred to as the standard error of β̂1.

In general, if we have a parameter θ that we estimate with θ̂, the quantity σ̂θ/
√
n

will be referred to as the standard error of θ̂ where

σ̂θ/
√
n =

√
Var(θ̂) =

√
σ̂2
θ

n

and σ2
θ is such that √

n(θ̂ − θ) ∼ N(0, σ2
θ).
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Variance Estimation: Questions

Questions?
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Linear Regression: Why Asymptotic Distribution?

Let’s return to our example and see why this characterization is useful. Recall that
in our example we are interested in the regression parameters from regression
Y = INC (income in thousands of dollars) against X = EDU (years of
education).

After collecting a sample size of 100, {Yi, Xi}100i=1 we find that:

β̂1 = 0.5

1

n

n∑
i=1

ε2i = 25

1

n

n∑
i=1

(Xi − X̄)2 = 16

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 53 / 95



Linear Regression: Why Asymptotic Distribution?

Let’s return to our example and see why this characterization is useful. Recall that
in our example we are interested in the regression parameters from regression
Y = INC (income in thousands of dollars) against X = EDU (years of
education).

After collecting a sample size of 100, {Yi, Xi}100i=1 we find that:

β̂1 = 0.5

1

n

n∑
i=1

ε2i = 25

1

n

n∑
i=1

(Xi − X̄)2 = 16

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 53 / 95



Linear Regression: Why Asymptotic Distribution?

Our friend His Majesty Prince Harry claims there is no relationship between
education and income, β1 = 0. We claim that observing the magnitute of
|β̂1| = 0.5 is evidence against this claim. Who is right?

• If β1 = 0 we would expect β̂1 to be close to zero.

• But there is still some randomness in β̂1, maybe we got β̂1 = 0.5 by chance.

Want to use the (asymptotic) distribution of β̂1 to answer this question.

• First need to estimate σβ1 .
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Linear Regression: Why Asymptotic Distribution?

Using σ̂2
ε = 1

n

∑n
i=1 ε

2
i = 25, and 1

n

∑n
i=1(Xi − X̄)2 = 16) we calculate

σ̂2
β1 =

σ̂2
ε

1
n

∑n
i=1(Xi − X̄)2

=
25

16

Using this, we find that σ̂β1 =
√
σ̂2
β1

= 5
4

.
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Linear Regression: Why Asymptotic Distribution?

Now recall that for n large we have that (approximately)

β̂1 − β1
σ̂β1/

√
n
∼ N(0, 1).

If the true value of β1 = 0 this means that

β̂1
5/40

=
β̂1

0.125
∼ N(0, 1).
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Linear Regression: Why Asymptotic Distribution?

Given that if β1 = 0, β̂1/0.125 ∼ N(0, 1), what is the probability of us observing
|β̂1| ≥ 0.5?

Pr
(
|β̂1| ≥ 0.5

)
= Pr

(
|β̂1/0.125| ≥ 0.5/0.125

)
= Pr(|Z| ≥ 4)

where Z ∼ N(0, 1)

= Pr(Z ≥ 4) + Pr(Z ≤ −4)

= 2 Pr(Z ≥ 4)

By symmetry of the normal distribution

≈ 0.00006
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Linear Regression: Why Asymptotic Distribution?

Using the asymptotic distribution result

β̂1 − β1
σ̂β1/

√
n
∼ N(0, 1),

we have found that if β1 = 0, then Pr(|β̂1| ≥ 0.5) ≈ 0.0006.

So, given that we observed β̂1 = 0.5, it seems very unlikely that β1 = 0. We can
conclude against Prince Harry’s claim.
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Asymptotic Distribution: Questions

Questions?

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 59 / 95



Table of Contents

The Basic Model

Estimation

Asymptotic Distribution

Hypothesis Testing and Confidence Intervals

Conclusion

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 60 / 95



Linear Regression: Hypothesis Testing

The last exercise where we tested whether Prince Harry’s claim made sense was an
example of a hypothesis test.

In this section we will formally discuss hypothesis testing.
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Linear Regression: What is a Hypothesis Test?

Often in linear regression analysis, we are interested in using parameter estimates,
β̂0 and β̂1, to test some baseline or null hypothesis about the poulation against an
opposite or alternative hypothesis.

• There is no association between years of education and income

◦ Null Hypothesis: β1 = 0.

◦ Alternative Hypothesis: β1 6= 0 ⇐⇒ |β1| > 0

• Smoking has a negative effect on life expectancy

◦ Null Hypothesis: β1 ≤ 0

◦ Alternative Hypothesis: β1 > 0

• There is a positive association between the miles per gallon of a car and its
final sales price

◦ Null Hypothesis: β1 ≥ 0

◦ Alternative Hypothesis: β1 < 0
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Linear Regression: What is a Hypothesis Test?

We will denote the null hypothesis as H0 and the alternative as H1.

• There is no association between years of education and income

◦ H0: β1 = 0.

◦ H1: β1 6= 0 ⇐⇒ |β1| > 0

• Smoking has a negative effect on life expectancy

◦ H0: β1 ≤ 0

◦ H1: β1 > 0

• There is a positive association between the miles per gallon of a car and its
final sales price

◦ H0: β1 ≥ 0

◦ H1: β1 < 0
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Linear Regression: What is a Hypothesis Test?

If H1 contains a “ 6=” sign, we call this a “two-sided” alternative.

Example: There is no association between years of education and income

• H0: β1 = 0

• H1: β1 6= 0

If H1 contains a “>” or a “<” sign, we call this a “one-sided” alternative.

Example: Cups of coffee drank has a negative association with hours of sleep

• H0: β1 ≤ 0

• H1: β1 > 0
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Linear Regression: How to Hypothesis Test

So, how do we use our data and parameter estimates β̂1 and β̂0 to test hypotheses?
Given a null hypothesis H0 and an alternative hypothesis, we have two options.

• We can reject the null hypothesis in favor of the alternative hypothesis.

◦ Do this when the probability of obtaining our observed value of β̂ (or something
even further from the null hypothesis) under the null hypothesis is smaller than
a pre-specified value α.

◦ The value α is called the “level” or “significance level” of the test.

◦ It is also the probability of a “Type 1” error, the probability that we will reject
the null hypothesis when the null hypothesis is true.

• We can fail to reject the null hypothesis.

◦ Do this when the probability of obtaining our observed value of β̂ (or something
even further from the null hypothesis) under the null hypothesis is larger than a
pre-specified value α.
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Linear Regression: How to Hypothesis Test

How do we calculate the probability, given that our null hypothesis is true, of
observing our value of β̂ or something even further from the null hypothesis?

Recall that, approximately for large n

β̂1 − β1
σ̂β1/

√
n
∼ N(0, 1) and

β̂0 − β0
σ̂β0/

√
n
∼ N(0, 1).

where σ̂2
β1

= σ̂2
ε/σ̂

2
X and σ̂2

β0
= 1

n

∑n
i=1X

2
i · σ̂2

ε/σ̂
2
X .
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Linear Regression: How to Hypothesis Test

Let Z ∼ N(0, 1). Using the distributions above, if we are testing H0 : β1 = b
against H1 : β1 6= b we can compute the probability (under the null hypothesis)
that we observe our value of β̂1 or something even further from the null hypothesis
by computing

Pr

(
|Z| >

∣∣∣∣ β̂1 − bσ̂β1/
√
n

∣∣∣∣
)
.

This probability is called the p-value and we reject our null hypothesis if the
p-value, p, is less than α.
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Linear Regression: How to Hypothesis Test

If we are testing H0 : β1 ≥ b against H1 : β1 < b we can compute the probability
(under the null hypothesis) that we observe our value of β̂1 or something even
further from the null hypothesis by computing

Pr

(
Z <

β̂1 − b
σ̂β1/

√
n

)
.

This probability is called the p-value and we reject our null hypothesis if the
p-value, p, is less than α.
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Linear Regression: How to Hypothesis Test

If we are testing H0 : β1 ≤ b against H1 : β1 > b we can compute the probability
(under the null hypothesis) that we observe our value of β̂1 or something even
further from the null hypothesis by computing

Pr

(
Z >

β̂1 − b
σ̂β1/

√
n

)
.
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Linear Regression: How to Hypothesis Test

In summary, the test above can be conducted as follows. Suppose H0 : β ≤ b,
H0 : β ≥ b, or H0 : β = b

1. Compute the test statistic

t∗ =
β̂ − b
σ̂β/
√
n
.
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Linear Regression: How to Hypothesis Test

In summary, the test above can be conducted as follows. Suppose H0 : β ≤ b,
H0 : β ≥ b, or H0 : β = b

2. Compute the p-value, the probability that we would obtain our observed value

of β̂, or something even further from the null hypothesis, if the null hypothesis
was correct

◦ If H0 : β = b and H1 : β 6= b compute

p = Pr(|Z| > |t∗|) = 2 Pr(Z > |t∗|).

◦ If H0 : β ≤ b and H1 : β > b compute

p = Pr(Z > t∗).

◦ If H0 : β ≥ b and H1 : β < b compute

p = Pr(Z < t∗).
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Linear Regression: How to Hypothesis Test

In summary, the test above can be conducted as follows. Suppose H0 : β ≤ b,
H0 : β ≥ b, or H0 : β = b

3. Reject the null hypothesis in favor of the alternative hypothesis if p < α.
Otherwise fail to reject the null hypothesis.
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Linear Regression: Hypothesis Testing Example

Let’s see this work in practice. Our close personal friend Jason Derulo claims that
there is a negative association between a car’s miles per gallon, X, and it’s sales
price in thousands of dollars, Y .

We want to use data to test this claim. We collect a random (i.i.d) sample of size
64, {Yi, Xi}64i=1 of cars and find

1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄) = 4

1

n

n∑
i=1

(Xi − X̄)2 = 16

1

n

n∑
i=1

ε̂2i = 36

We will this data to test Derulo’s claim, H0 : β1 ≤ 0, against an alternate
hypothesis, H1 : β1 > 0.
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Linear Regression: Hypothesis Testing Example

In order to test this null hypothesis (against it’s alternative) we need to calculate

the test statistic t∗ = β̂1−0
σ̂β1/

√
n

.

β̂1 =
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2

=
4

16
= 0.25

σ̂β1 =
1
n

∑n
i=1 ε̂

2
i

1
n

∑n
i=1(Xi − X̄)2

=
36

16

Using this, we compute the test statistic

t∗ =
0.25√

36/16/
√

64
≈ 1.333.
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Linear Regression: Hypothesis Testing Example

Using this test statistic, t∗ ≈ 1.333, let’s conduct the following test at level α = 0.1

H0 : β1 ≤ 0 and H1 : β1 > 0.

Compute the p-value

p = Pr(Z > 1.333) = 1− Pr(Z ≤ 1.333) = 1− 0.908 = 0.092.

Because the p-value, 0.092 is less than α = 0.1, we reject the null hypothesis that
there is a negative association between miles per gallon and sales price in favor of
the alternative that there is a positive relationship between the two.
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Linear Regression: Hypothesis Testing Example

Now given t∗ ≈ 1.333, suppose that we wanted to conduct a two sided test at level
α = 0.1. That is, suppose we wanted to test

H0 : β1 = 0 and H1 : β1 6= 0.

Compute the p value for a two-sided test

p = Pr(|Z| > |t∗|) = 2 Pr(Z > |t∗|) = 2(1− Pr(Z ≤ 1.333)) = 2 · 0.092 ≈ 0.194.

Given that p = 0.194 > 0.1 we fail to reject the null hypothesis that there is no
relationship between miles per gallon and sales price.
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Linear Regression: Hypothesis Testing Example

Notice that the p-value for a two-sided test was twice the p-value for the one-sided
test! The reverse is not necessarily true however.

Why?

• Suppose t∗ = 1.64 so that the p-value for a two sided test is

Pr(|Z| > 1.64) = 2 Pr(Z > 1.64) = 0.1.

• What is the p-value for the test H0 : β1 ≤ 0 against H1 : β1 > 0?

• What is the p-value for the test H0 : β1 ≥ 0 against H1 : β1 < 0?
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Hypothesis Testing: Questions

Questions?
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Linear Regression: How to Hypothesis Test

Conducting the test above can also follow another standard procedure. Suppose
H0 : β ≤ b, H0 : β ≥ b, or H0 : β = b

1. Compute the test statistic or “t-statistic”

t∗ =
β̂ − b
σ̂β/
√
n
.
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Linear Regression: How to Hypothesis Test

Conducting the test above can also follow another standard procedure. Suppose
H0 : β ≤ b, H0 : β ≥ b, or H0 : β = b

2. For a given level α compute z1−α for a one sided alternative or z1−α/2 for a 2
sided alternative, where z1−α and z1−α/2 are such that

Pr(Z > z1−α) = α and Pr(Z > z1−α/2) =
α

2
.

These are called the 1− α and 1− α/2 quantiles of the standard normal
distribution, respectively.

◦ z0.9 ≈ 1.28

◦ z0.95 ≈ 1.64

◦ z0.975 ≈ 1.96

◦ z0.99 ≈ 2.32

◦ z0.995 ≈ 2.57
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Linear Regression: How to Hypothesis Test

Conducting the test above can also follow another standard procedure. Suppose
H0 : β ≤ b, H0 : β ≥ b, or H0 : β = b

3. Compare the test statistic t∗ to the quantile z1−α or z1−α/2.

◦ If H0 : β = b and H1 : β 6= b, reject if |t∗| > z1−α/2

◦ If H0 : β ≥ b and H1 : β < b, reject if t∗ < −z1−α
◦ If H0 : β ≤ b and H1 : β > b, reject if t∗ > z1−α

Otherwise, fail to reject the null hypothesis.
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Linear Regression: Hypothesis Testing Example

Let’s return to the hypothesis testing example from earlier to verify that this
procedure gives the same results as comparing p-values.

Recall that in this example our friend Jason Derulo has claimed that there is a
negative association between miles per gallon of a car and sales price of a car.
That is we want to test at level α = 0.1

H0 : β1 ≤ 0 vs. H1 : β1 > 0.

After collecting data, we find that t∗ ≈ 1.333. To test this hypothesis, we will
compare this value to z1−0.1 = z0.9 = 1.28. We are conducting a one sided
alternative (> sign) so we look to see if t∗ > z0.9.

Since t∗ ≈ 1.3333 > z0.9 = 1.28 we reject the null hypothesis that there is a
negative association between miles per gallon of a car and sales price of a car in
favor of the alternative hypothesis that there is a positive relationship.

• Same result as when using the p-value
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Linear Regression: Hypothesis Testing Example

Now let’s use this procedure to test at level α = 0.1

H0 : β1 = 0 vs. H1 : β1 6= 0.

Because we are dealing with a two sided alternative ( 6= sign) we have to compare
|t∗| to z1−α/2 = z1−0.1/2 = z0.95.

Since t∗ ≈ 1.333 < z0.95 = 1.64 we fail to reject the null hypothesis against a
two-sided alternative.
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Hypothesis Testing: Questions

Questions?

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 78 / 95



Linear Regression: Confidence Intervals

Given our data {Yi, Xi}ni=1 we now know how to construct estimates, β̂0, β̂1 of the
linear model parameters β0, β1 where

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1 ·X

)2]
.

As a reminder, these parameters β0, β1 can equivalently be described as coming
from a linear model

Y = β0 + β1 ·X + ε.

where E[ε] = E[εX] = 0. The term ε is called the “linear regression error”.
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Linear Regression: Confidence Intervals

Also given our data {Yi, Xi}ni=1 we know how to test hypothesis about the linear
regression parameters β0 and β1 such as

H0 : β1 ≥ 6 vs. H1 : β1 < 6.

or
H0 : β0 = 0 vs. H1 : β0 6= 0.
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Linear Regression: Confidence Intervals

Now, given our data {Yi, Xi}ni=1 we want to do is construct a range of values that
we are “confident” that the true parameter, β0 or β1 lies in.

We call this range of values a 100 · (1− α)% Confidence Interval.

• e.j if α = 0.05 we would want to construct a 95% confidence interval.

What values should we include in a 100 · (1− α)% Confidence Interval?

• Any value b for which we would not reject H0 : β = b against a two sided
alternative H1 : β 6= b at level α.
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Linear Regression: Confidence Intervals

What values should we include in a 100 · (1− α)% Confidence Interval?

• Any value b for which we would not reject H0 : β = b against a two sided
alternative H1 : β 6= b at level α.

Recall that we reject H0 : β = b in favor of H1 : β 6= b if

|t∗| =

∣∣∣∣∣ β̂ − bσ̂β/
√
n

∣∣∣∣∣ > z1−α/2.

We fail to reject H0 : β = b in favor of H1 : β 6= b if∣∣∣∣∣ β̂ − bσ̂β/
√
n

∣∣∣∣∣ ≤ z1−α/2.
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Linear Regression: Confidence Intervals

Equivalently we can say that we fail to reject H0 : β = b in favor of H1 : β 6= b if

β̂ − z1−α/2 ·
(
σ̂β/
√
n
)
≤ b ≤ β̂ + z1−α/2 ·

(
σ̂β/
√
n
)
.

Thus our 100 · (1− α)% confidence interval is given[
β̂ − z1−α/2 ·

(
σ̂β/
√
n
)
, β̂ + z1−α/2 ·

(
σ̂β/
√
n
)]
.

This is interpreted as: we are 100 · (1− α)% confident that the true value of β lies
in the interval [

β̂ − z1−α/2 ·
(
σ̂β/
√
n
)
, β̂ + z1−α/2 ·

(
σ̂β/
√
n
)]
.
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Linear Regression: Confidence Interval Example

Let’s see this in practice. Suppose the government wants to know what the effect is
of offering cash incentives to people to get vaccinated on their vaccination status.

To study this policy we randomly select 100 (unvaccinated) people from the
population and offer them a random cash incentive (from $0 to $100) and then
observe whether or not they get vaccinated.

Our data then looks like {Yi, Xi}100i=1 where Yi ∈ {0, 1} denotes a person’s
vaccination status and Xi ∈ [0, 100] denotes the cash incentive offered to people.
We want to construct a confidence interval for the parameter β1 from the linear
model

Y = β0 + β1 ·Xi + εi, E[ε] = E[εX] = 0.
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observe whether or not they get vaccinated.

Our data then looks like {Yi, Xi}100i=1 where Yi ∈ {0, 1} denotes a person’s
vaccination status and Xi ∈ [0, 100] denotes the cash incentive offered to people.
We want to construct a confidence interval for the parameter β1 from the linear
model

Y = β0 + β1 ·Xi + εi, E[ε] = E[εX] = 0.

• As a reminder we can think of this model as generated by the line of best fit
parameters

β0, β1 = arg min
β̃0,β̃1

E
[
(Y − β̃0 − β̃1X)2

]
.
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Let’s see this in practice. Suppose the government wants to know what the effect is
of offering cash incentives to people to get vaccinated on their vaccination status.

To study this policy we randomly select 100 (unvaccinated) people from the
population and offer them a random cash incentive (from $0 to $100) and then
observe whether or not they get vaccinated.

Our data then looks like {Yi, Xi}100i=1 where Yi ∈ {0, 1} denotes a person’s
vaccination status and Xi ∈ [0, 100] denotes the cash incentive offered to people.
We want to construct a confidence interval for the parameter β1 from the linear
model

Y = β0 + β1 ·Xi + εi, E[ε] = E[εX] = 0.

• Important for the government, when considering a policy, to not only have a
point estimate of the effect but also a measure of how confident we are in the
point estimate.
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Linear Regression: Confidence Interval Example

After collecting our data {Yi, Xi}100i=1 we find that

1

n

n∑
i=1

X2
i = 6

1

n

n∑
i=1

(Xi − X̄)2 = 4

1

n

n∑
i=1

ε̂2i = 0.25

1

n

n∑
i=1

(Yi − Ȳ )(Xi − X̄) = 0.1
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Linear Regression: Confidence Interval Example

Using this data we compute

β̂1 =
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2

=
0.1

4
= 0.025

σ̂2
β1 =

σ̂2
ε

1
n

∑n
i=1(Xi − X̄)2

=
0.25

4
= 0.0625

Question: Given that Y ∈ {0, 1}, how do we interpret β̂1 in this context? How
would we interpret β̂0 in this context?
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Linear Regression: Confidence Interval Example

Now let’s construct a 95% confidence interval for β1.

Recall that a 100 · (1− α)%
confidence interval for β1 is given by

β̂1 ± z1−α/2 ·
σ̂β1√
n
.

In this case α = 0.05. From above we have that z0.975 ≈ 1.96. Plugging in our
values from above the 95% confidence interval for β1 is given

0.025± 1.96 ·
√

0.0625√
100

= 0.025± 1.96 · 0.25

10
= [−0.024, 0.074].
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Linear Regression: Confidence Interval Example

Plugging in our values from above the 95% confidence interval for β1 is given

0.025± 1.96 ·
√

0.0625√
100

= 0.025± 1.96 · 0.25

10
= [−0.024, 0.074]

Questions:

1. How do we interpret this confidence interval?

2. Suppose we wanted to test H0 : β1 = 0 vs H1 : β1 6= 0 at level α = 0.05.
What would be the result?

◦ What about if we wanted to test this hypothesis at level α = 0.025?
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Linear Regression: Final Notes

In this lecture we have introduced the line of best fit parameters

β0, β1 = arg min
β̃0,β̃1

E
[
(Y − β0 − β1X)2

]
After taking ε = Y − β0 − β1X, these parameters generate the linear model

Y = β0 + β1X + ε, E[ε] = E[εX] = 0.

While the linear model is often easier to work with, it is useful to keep the line of
best fit interpretation in the back of our mind. It provides our model
interpretability even when the true relationship between Y and X is not linear.
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Linear Regression: Final Notes

Since we do not know the joint distribution of (Y,X), we have to use data,
{Yi, Xi}ni=1 to estimate β̂0 and β̂1

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1Xi)2.

Taking first order conditions this gives

β̂0 = Ȳ − β̂1X̄

β̂1 =
1
n

∑n
i=1(Yi − Ȳ )(Xi − X̄)
1
n

∑n
i=1(Xi − X̄)2
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Linear Regression: Final Notes

We also derived the asymptotic distribution of our estimates. Using the law of
large numbers and the central limit theorem we can say that, under
homoskedasticity, approximately for large n,

β̂0 ∼ N

(
β0,E[X2]

σ̂2
ε

nσ2
X

)

β̂1 ∼ N

(
β1,

σ2
ε

nσ2
X

)

Estimation of σ̂2
ε = 1

n

∑n
i=1 ε̂

2
i
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Linear Regression: Final Notes

Finally, we covered how to use these asymptotic distributions and our data to test
various hypothesis about the underlying parameters such as

H0 : β0 = 5 vs. H1 : β0 6= 5

or

H0 : β1 ≤ 0 vs. H1 : β1 > 0

As well as construct confidence intervals for the parameters β0 and β1.

• These sorts of inferential results are important for policy analysis and separate
the econometrics/statistics approaches from machine learning

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 93 / 95



Linear Regression: Final Notes

Finally, we covered how to use these asymptotic distributions and our data to test
various hypothesis about the underlying parameters such as

H0 : β0 = 5 vs. H1 : β0 6= 5

or

H0 : β1 ≤ 0 vs. H1 : β1 > 0

As well as construct confidence intervals for the parameters β0 and β1.

• These sorts of inferential results are important for policy analysis and separate
the econometrics/statistics approaches from machine learning

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 93 / 95



Linear Regression: Final Notes

As a quick aside, in the above we used a lot of “approximations” to get the
asymptotic distributions and then conduct inference:

• In the derivation of the asymptotic distribution of β̂1 used Ȳ ≈ µY and
X̄ ≈ µX

• When we conduct inference on the parameters β0 and β1 used the fact that
approximately for large n

β̂1 ∼ N(β1,
σ2
ε

σ2
X

).

• When estimating σ2
ε used the fact that, since β̂1 → β1 and β̂0 → β0, ε̂i ≈ εi

Manu Navjeevan (UCLA) Econ 103: Introduction to Simple Linear Regression 94 / 95



Linear Regression: Final Notes

As a quick aside, in the above we used a lot of “approximations” to get the
asymptotic distributions and then conduct inference:

• In the derivation of the asymptotic distribution of β̂1 used Ȳ ≈ µY and
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Linear Regression: Final Notes

It is natural to wonder, is this too much approximation?

• In general in this class we will ignore these approximation errors

• They tend to be second order and go away rather quickly with n (and get
arbitrarily small as n increases)

• In practice, usually ok so long as n ≥ 50. Otherwise have to rely on strong
additional assumptions that are generally violated.
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